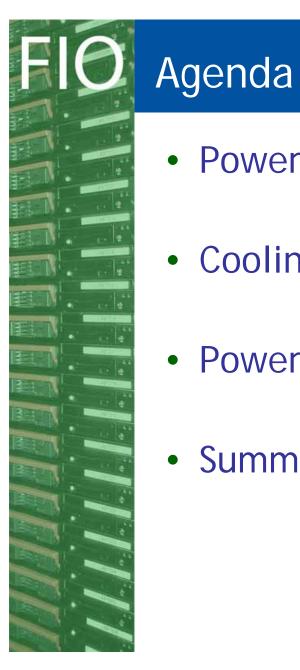


Fabric Infrastructure and Operations

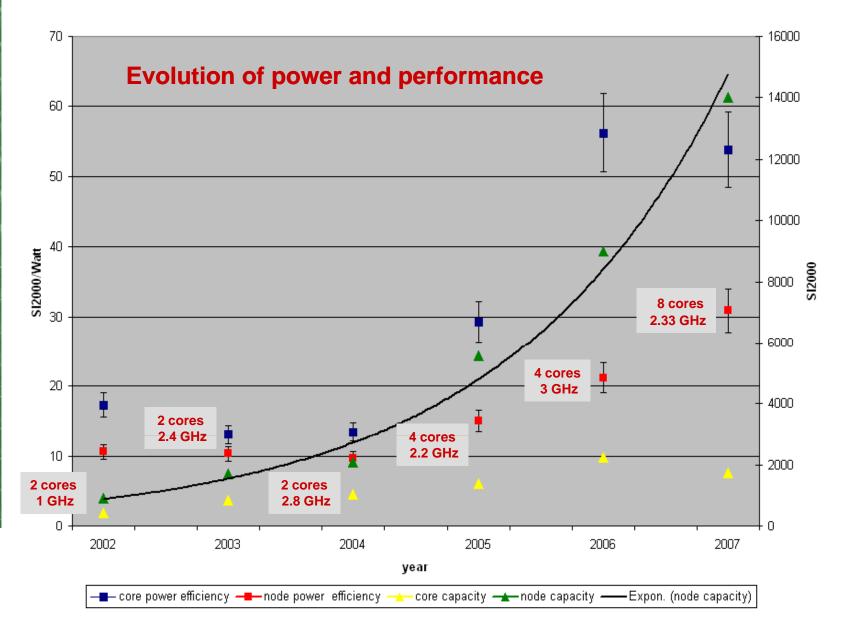

Computer Centre Evolution: Infrastructure Issues

CERN openlab Board of Sponsors Meeting April 26th 2007

Tony Cass

Many interesting discussions with Intel personnel gratefully acknowledged

- Power Growth
- Cooling
- Power Delivery
- Summary



Power Growth

CH-1211 Genève 23 Switzerland www.cern.ch/it

Cooling Options

- Power in = Heat out
- How to remove?
 - Water
 - + efficient (over 3,000x better than air, volume for volume)
 - in-room distributions (if they exist) generally not adapted
 - leak risk relatively high for per-rack solutions
 - limited redundancy for closed rack solutions (failure or maintenance)
 - Air
 - inefficient
 - + flexible
 - + standard
 - Alternatives?
 - exist (e.g. CO₂), but are rather exotic and not considered further here.

Computer Centre Evolution - 4

Air Cooling Issues

- Capability...
 - ... needs to increase from ~3kW/m² to ~20kW/m²
 - rigorous separation of hot and cold aisles is key
- Efficiency
 - Poorly designed cooling systems can double overall power demand for a computer centre.
 - Efficient centres can reduce the overhead to ~30%
 - minimise cold air leakage
 - maximise temperature difference between outlet and inlet air.
 - high outlet air temperature improves overall system efficiency
 - ambient external air can be used as part of the cooling cycle for much of the year.
- Redundancy and backup are essential
 - Temperatures can rise dramatically if the cooling fails!

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Power delivery

- High power density electrical installations are not a problem.
- Efficient power delivery to the processor is the issue.
 - At electricity costs of ~300k€/MW/year (400k\$), small efficiency increases lead to large savings
 - a 1% increase in efficiency saves 30k€/yr for a 10MW supply.
 - If the efficiency reduces the heat dissipated, the savings can more than double
 - reduced heat load => reduced power demand for the cooling system.

Where can efficiency increase?

Motherboard/processor?

- ? I'm not an expert, but reducing the range of voltages used would likely improve efficiency.
- System power supply
 - Easier to achieve efficiency in a larger power supply
 - a key advantage for blades over single systems
 - further improvements with an in-rack backplane?
 - but industry standard needed, not proprietary options
 - Harmonics & Harmonic reduction impact
 - passive filters reduce 3rd harmonics, but switch the nature of the load from inductive to capacitative which has a negative impact on the upstream distribution.
 - active filters avoid this impact, but are more costly.

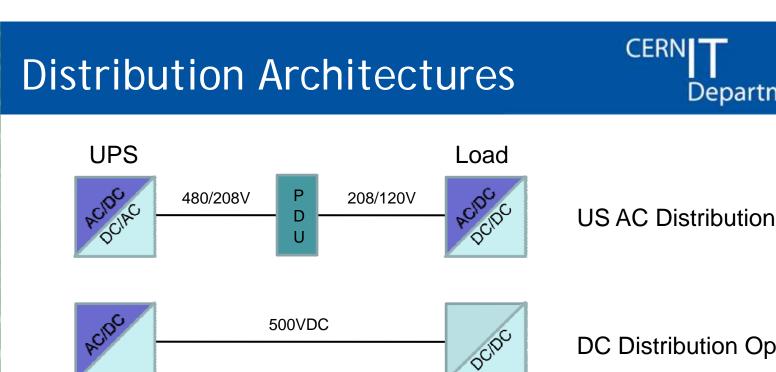
• Upstream

- Power line losses
 - a factor to consider when choosing a location
- Machine room distribution: DC vs AC

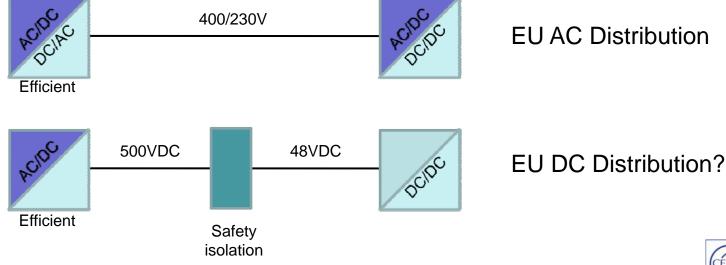
Department

Computer Centre Evolution - 7

DC Distribution



- DC distribution reduces losses due to multiple power conversions
 - AC/DC then DC/AC in the UPS
 - Step down transformer before load
 - AC/DC in power supply
- Interesting option but
 - standardisation needed
 - supply architecture differences (and safety norms?) may reduce the efficiency gains in Europe as compared to the US.



CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

DC Distribution Option

Department

Computer Centre Evolution - 9

Summary

- Computer Centre infrastructure must evolve if we are to meet likely demand for growth in compute capacity.
- Air cooling is possible for densities up to ~20kW/rack
 - but the option to use at CERN depends on the configuration of the building; if constructing new, favour long narrow rooms over square.
 - efficient solutions are essential to reduce overall power demand
- Power delivery efficiency is also increasingly important
 - upstream, c.f. interest in DC solutions
 - in the box

CERN

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Agenda and Summary

- Power Growth
 - looks set to continue; overall and per rack
- Cooling
 - the biggest challenge!
- Power Delivery
 - efficiency, efficiency, efficiency
- Summary

